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• PM was invented in the 1950’s at LANL for simulations of compressible fluid
flows

• However, the first wide-spread application was for collisionless plasma
simulations (for which PM was reinvented in the 1960’s and popularized by
Hockney and collaborators)

• In the late 70’s PM was first applied for 3D cosmological simulations. The
method and its descendants (such as P3M, AP3M, and ART) have been
used in most cosmological simulations ever since 1.

• The popularity of PM in cosmology is due to

? its relative algorithmic simplicity and speed (the running time scales as
∝ O(Np) +O(Nc lnNc), where Np is the number of particles and Nc is the
number of grid cells;

? natural incorporation of periodic boundary conditions;

1In the 1990’s Tree codes have also enjoyed increasing popularity
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Model equations

PM code solves the Poisson equation

∇2Φ = 4πGρtot − Λ,

and equations of motion of particles

dr
dt

= u;
du
dt

= −∇Φ,

note that all variables are defined in proper coordinates and all spatial
derivatives are also taken with respect to these coordinates.
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However, it is convenient to re-write the equations in comoving variables and
make them dimensionless by choosing suitable units (I will denote variables in
code units with a tilde )̃. In the following, I will adopt the variables and units
used in Anatoly Klypin’s PM code. This is just an example. Feel free to choose
your own - just make sure you are consistent!

x̃ ≡ a−1 r
r0
, p̃ ≡ a v

v0
, φ̃ ≡ φ

φ0
, ρ̃ = a3 ρ

ρ0
,

where x is the comoving coordinates, v = u−Hr = aẋ is the peculiar
velocity2 and φ is the peculiar potential defined as (Peebles 1980, p. 42)

φ = Φ + 1/2 aä (r/a)2 = Φ +
H2

0

2

(
ΩΛ,0 −

1
2
a−3Ωm,0

)
r2,

where
Ωm,0 =

8πGρ0

3H2
0

; ΩΛ,0 =
Λ

3H2
0

.

2p ∝ av is called momentum, this choice of variable allows us to get rid of the annoying (ȧ/a) terms in
equations.

http://astro.NMSU.Edu/~aklypin/PM/pmcode/node2.html#SECTION00020000000000000000
http://astro.NMSU.Edu/~aklypin/PM/pmcode/node2.html#SECTION00020000000000000000
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The quantities with subscript zero are the units in which corresponding
physical variables are measured. The unit of length, r0, is an arbitrary scale. I
will chose r0 to be the size of the PM grid cell:

r0 =
Lbox

Ng
; N3

g = total number of grid cells

the rest of the units are defined as

t0 ≡ H−1
0 ,

v0 ≡ r0

t0
,

ρ0 ≡ 3H2
0

8πG
Ωm,0,

φ0 ≡ r2
0

t20
= v2

0.
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It is also convenient to choose the expansion factor as time variable (using
expressions for the Hubble constant: ȧ = aH(a)). For this choice of variables,
the Poisson equation and equations of motion can be re-written as

∇2φ = 4πGΩm,0ρcrit,0a−1δ, δ =
ρ− ρ̄
ρ̄

,

dp
da

= −∇φ
ȧ
,

dx
da

=
p
ȧa2

.

where δ is the overdensity in comoving coordinates and ȧ is

ȧ = H0a
−1/2

√
Ωm,0 + Ωk,0a+ ΩΛ,0a3; Ωm,0 + ΩΛ,0 + Ωk,0 = 1
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In dimensionless variables the equations are:

∇̃2φ̃ =
3
2

Ω0

a
δ̃,

dp̃
da

= −f(a)∇̃φ̃, dx̃
da

= f(a)
p̃
a2
.

where δ̃ = ρ̃− 1 and

f(a) ≡ H0/ȧ =
[
a−1

(
Ωm,0 + Ωk,0a+ ΩΛ,0a

3
)]−1/2

.

These equations are used in the three main steps of a PM code:
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[
a−1

(
Ωm,0 + Ωk,0a+ ΩΛ,0a

3
)]−1/2

.

These equations are used in the three main steps of a PM code:

• Solve the Poisson equation using the density field estimated with current
particle positions.

• Advance momenta using the new potential.



Model equations 6

In dimensionless variables the equations are:
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f(a) ≡ H0/ȧ =
[
a−1

(
Ωm,0 + Ωk,0a+ ΩΛ,0a
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.

These equations are used in the three main steps of a PM code:

• Solve the Poisson equation using the density field estimated with current
particle positions.

• Advance momenta using the new potential.

• Update particle positions using new momenta.
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Data structures

For a PM code with the second-order accurate time integration we need the
minimum of six real numbers for positions and momenta for each particle
(assuming particles have the same mass) and one real number for the
potential of each grid cell.

The array for the potential can be shared between density and potential: first
use it for density, then replace it with potential when the Poisson equation is
solved. However, for simplicity you can start with two grid arrays (for density
and potential). Also, you will probably need auxiliary arrays for FFT,
depending on which FFT solver you choose to use.

The convenient data structures are 1D or 3D arrays for particles (e.g., six 1D
arrays for x(i), y(i), z(i), vx(i), vy(i), vz(i) ) and 3D arrays
for the grid variables (e.g., rho(i,j,k), phi(i,j,k) ).

Run your tests for (323, 643) or (643, 1283) particles and cells in which case
memory requirements should not be an issue.
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Density Assignment

The Particle Mesh algorithms assume that particles have certain size, mass,
shape, and internal density. This determines the interpolation scheme used to
assign densities to grid cells. Let’s define the 1D particle shape, S(x), to be
mass density at the distance x from the particle for cell size ∆x (Hockney &
Eastwood 1981). The common choices are

• Nearest Grid Point (NGP): particles are point-like and all of particle’s mass
is assigned to the single grid cell that contains it:

S(x) =
1

∆x
δ
( x

∆x

)

• Cloud In Cell (CIC): particles are cubes (in 3D) of uniform density and of one
grid cell size.

S(x) =
1

∆x

{
1, |x| < 1

2∆x
0, otherwise
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• Triangular Shaped Cloud (TSC):

S(x) =
1

∆x

{
1− |x|/∆x, |x| < ∆x
0, otherwise

The fraction of particle’s mass assigned to a cell ijk is the shape function
averaged over this cell:

W (xp − xijk) =

xijk+∆x/2∫
xijk−∆x/2

dx′S(xp − x′);

W (rp − rijk) = W (xp − xijk)W (yp − yijk)W (zp − zijk);

The density in a cell ijk is then

ρijk =
Np∑
p=1

mpW (rp − rijk)
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In practice, of course, we loop over particles and assign the density to
neighboring cells as opposed to summing over all particles for each cell as the
straightforward reading of the above equation would suggest.
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PM interpolation kernels in real and Fourier space. Adopted from PM lectures by M.Gross

3-9

the density assignment wider in configuration space.
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Implementing CIC interpolation

The choice of interpolation scheme is a tradeoff between accuracy and
computational expense. The CIC scheme is both relatively cheap and
accurate and is most commonly used in PM codes. I will now describe how to
implement it (you can start coding with the simpler NGP scheme and upgrade
it to CIC later when your code is tested).
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Implementing CIC interpolation

The choice of interpolation scheme is a tradeoff between accuracy and
computational expense. The CIC scheme is both relatively cheap and
accurate and is most commonly used in PM codes. I will now describe how to
implement it (you can start coding with the simpler NGP scheme and upgrade
it to CIC later when your code is tested).

Consider the density assignment for a particle with coordinates {xp, yp, zp}
The cell containing the particle will have indices of

i = [xp]; j = [yp]; k = [zp],

where [x] is the integer floor function (equivalent to Fortran’s int ). Let’s
assume that cell centers are at {xc, yc, zc} = {i+ ∆x/2, j + ∆x/2, k + ∆x/2},
where ∆x is the cell’s size (in the internal code units chosen above ∆x = 1,
this will be implicitly assumed below). This is a matter of convention, but once
chosen the convention should be consistent throughout the code.
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In the CIC scheme, particle {xp, yp, zp} may contribute to densities in the
parent cell (i, j, k) and seven neighboring cells3. Let’s define

dx = xp − xc; dy = yp − yc; dz = zp − zc;

tx = 1− dx; ty = 1− dy; tz = 1− dz.
Contributions to the eight cells are then linear interpolations in 3D:

ρi,j,k = ρi,j,k +mptxtytz; ρi+1,j,k = ρi+1,j,k +mpdxtytz;

ρi,j+1,k = ρi,j+1,k +mptxdytz; ρi+1,j+1,k = ρi+1,j+1,k +mpdxdytz;

ρi,j,k+1 = ρi,j,k+1 +mptxtydz; ρi+1,j,k+1 = ρi+1,j,k+1 +mpdxtydz;

ρi,j+1,k+1 = ρi,j+1,k+1 +mptxdydz; ρi+1,j+1,k+1 = ρi+1,j+1,k+1 +mpdxdydz; ,

where mp is particle mass. Doing this for all particles will result in the grid of
densities ρi,j,k.

3Make sure you enforce periodic boundary conditions: i = mod(i, Ng,1), etc. for j and k.



PM: main code blocks 14

Solving the Poisson equation

With the grid of densities, ρi,j,k, in hand, the code can proceed to solve the
discretized4 Poisson equation

∇̃2φ̃ ≈ φ̃i−1,j,k + φ̃i+1,j,k + φ̃i,j−1,k + φ̃i,j+1,k + φ̃i,j,k−1 + φ̃i,j,k+1 − 6φ̃i,j,k =

=
3
2

Ω0

a
(ρ̃i,j,k − 1).
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Solving the Poisson equation

With the grid of densities, ρi,j,k, in hand, the code can proceed to solve the
discretized4 Poisson equation

∇̃2φ̃ ≈ φ̃i−1,j,k + φ̃i+1,j,k + φ̃i,j−1,k + φ̃i,j+1,k + φ̃i,j,k−1 + φ̃i,j,k+1 − 6φ̃i,j,k =

=
3
2

Ω0

a
(ρ̃i,j,k − 1).

The discretization thus results in a large system of linear equations relating
unknowns, φ̃i,j,k, to the known right hand side values. This system can be
solved using FFT.

4It is customary in PM codes to discretize the Laplacian operator using the 7-point template.
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In the Fourier space the Poisson equation is φ̃(k) = G(k)δ̃(k), where G(k) is
the Green function which for the adopted discretization is given by

G(k) = −3Ω0

8a

[
sin2

(
kx
2

)
+ sin2

(
ky
2

)
+ sin2

(
kz
2

)]−1

,

where L = Ng is the box size in code units and

kx = 2πl/L, ky = 2πm/L, kz = 2πn/L, for component (l,m, n).

The singularity at l = m = n = 0 should be avoided by setting this component
of potential, φ̂000, by hand to zero.
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⇒ Given a density field δ̃(r) in real space, we can solve for the gravitational
potential by
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⇒ Given a density field δ̃(r) in real space, we can solve for the gravitational
potential by

• performing the FFT to get δ̃(k),

• multiplying every element in the field by the corresponding value of G(k) to
get φ̃(k),

φ̂lmn = G(klmn)ρ̂lmn,where

f̂lmn = (∆x)3

Ng−1∑
i,j,k=0

fijke
−i2π(il+jm+kn)/Ng,

fijk =
1
L3

Ng−1∑
l,m,n=0

f̂lmne
i2π(il+jm+kn)/Ng.
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⇒ Given a density field δ̃(r) in real space, we can solve for the gravitational
potential by

• performing the FFT to get δ̃(k),

• multiplying every element in the field by the corresponding value of G(k) to
get φ̃(k),

φ̂lmn = G(klmn)ρ̂lmn,where

f̂lmn = (∆x)3

Ng−1∑
i,j,k=0

fijke
−i2π(il+jm+kn)/Ng,

fijk =
1
L3

Ng−1∑
l,m,n=0

f̂lmne
i2π(il+jm+kn)/Ng.

• transforming5 the result back to real space to get φ̃(r) discretized at cell
centers.

5Be careful about normalization of the FFT. The transforms δ̃(r)→ δ̃(k) and δ̃(k)→ δ̃(r) should recover the
original field δ̃(r).
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Updating particle positions and velocities

Let us assume we are using constant integration step in ∆a and the
second-order accurate leapfrog integration.

Schematic of the leapfrog integration for a variable time step. Note how
velocities and particles are staggered in time. (adopted from M.Gross’s PM notes).
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After n time steps, an = ai + n∆a, during the step n+ 1, we should have
coordinates x̃n at an and momenta p̃n−1/2 at an−1/2 = an −∆a/2 from the
previous step. Assigning density and solving the Poisson equation gives
potential φ̃n at an. For the assumed variables and units, positions and
momenta are updated as follows:

p̃n+1/2 = p̃n−1/2 + f(an)g̃n∆a; x̃n+1 = x̃n + a−2
n+1/2f(an+1/2)p̃n+1/2∆a.

Here, g̃n = −∇̃φ̃n is acceleration at the particle’s position. This acceleration
can be obtained by interpolating accelerations from the neighboring cell
centers. The latter are given by

g̃xi,j,k = −(φ̃i+1,j,k − φ̃i−1,j,k)/2, g̃yi,j,k = −(φ̃i,j+1,k − φ̃i,j−1,k)/2,

g̃zi,j,k = −(φ̃i,j,k+1 − φ̃i,j,k−1)/2.
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For each component of the acceleration, you should use the same
interpolation scheme as during density assignment. For a given particle the
acceleration should be interpolated from the cells to which particle contributed
density during density assignment step. This is important! Consistency in
interpolation schemes ensures absence of artificial self-forces and the third
Newton’s law (Hockney & Eastwood 1981).

For the NGP scheme, acceleration for a particle is just the acceleration of its
parent cell g̃i,j,k. For the CIC interpolation, we do the following (indices (i, j, k)
here correspond to the parent cell of the particle; see section on density
assignment).

gxp = gxi,j,ktxtytz + gxi+1,j,kdxtytz + gxi,j+1,ktxdytz + gxi+1,j+1,kdxdytz +

gxi,j,k+1txtydz + gxi+1,j,k+1dxtydz + gxi,j+1,k+1txdydz + gxi+1,j+1,k+1dxdydz.

And the same for gpy and gpz . tx,y,z and dx,y,z have the same definition as in the
CIC density assignment described above.

After updating particle positions and velocities, the code should do some
useful I/O and then proceed to step n+ 2.
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Zeldovich approximation

• A first-order (linear) Lagrangian collapse model
[Zeldovich 1970; see also Peacock’s (p. 485) and Padmanabhan’s (p. 294) textbooks for pedagogical introduction]

• Zeldovich approximation can be expressed by one equation:

x(t) = q +D+(t)S(q),

it may look more familiar if you think about it as

x(t) = x0 + vt; v = const

where
q is the initial position of a matter parcel (a particle in N -body simulations) and

x(t) is its position at time t (both q and x are comoving).

D+(t) is the linear growth function [see eq. (29) in Carrol et al. (1993) for a useful fitting formula] and

S(q) is a time-independent displacement vector.

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1970A%26A.....5...84Z&db_key=AST&high=3c5dd7953005989
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1992ARA%26A..30..499C&db_key=AST&high=3c5dd7953007947
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• The evolution of density follows from conservation of mass ρ(x)d3x = ρ̄d3q :

ρ(x, t) =
ρ̄

det(∂xj/∂qi)
=

ρ̄

det[δij +D+(t)× (∂Sj/∂qi)]

http://xxx.lanl.gov/abs/astro-ph/9512141
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• ZA is exact in 1D until the first crossing of particle trajectories occurs. This
is because in 1D ZA describes collapse of parallel sheets of matter and
acceleration of each sheet is independent of x until sheets cross.
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• The evolution of density follows from conservation of mass ρ(x)d3x = ρ̄d3q :

ρ(x, t) =
ρ̄

det(∂xj/∂qi)
=

ρ̄

det[δij +D+(t)× (∂Sj/∂qi)]

• ZA is exact in 1D until the first crossing of particle trajectories occurs. This
is because in 1D ZA describes collapse of parallel sheets of matter and
acceleration of each sheet is independent of x until sheets cross.

• Although ZA is only an approximation in 3D, it still works very well at the
initial stages of evolution of cosmological density fields because flattened
pancake structures (whose evolution is well described by ZA) are typical in
such fields6 [see, e.g., Bond et al. (1996)]. This makes ZA the method of
choice for setting up initial conditions in cosmological simulations.

6Another explanation of the success of ZA is its use of displacement field, S(q), as the basis for evolution
model. Density depends on the derivatives of S(q) so that small (linear) displacements can correspond to large
density contrasts.

http://xxx.lanl.gov/abs/astro-ph/9512141
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A test problem: 1D collapse of a plane wave

• Let’s consider the evolution of a 1D sine-wave S(q) = A sin(kq):

x(a) = q +D+(a)A sin(kq); k = 2π/λ;

• Let’s assume we want to simulate a wave with wavelength equal to the
simulation box size, λ = Lbox = Ng using N3

p,1 particles and N3
g grid cells in

a cubic grid. In 3D, the 1D equations can be used to set up initial conditions
for Np,1 parallel sheets of particles. For some initial epoch, aini, we have

xi(aini) = qi +D+(aini)A sin
(

2πqi
Lbox

)
; qi = (i− 1)

Lbox

Np,1
for i = 1, ..., Np,1;

• Take the time derivative of x to get equation for peculiar velocity v = aẋ (or
momentum p = av, if needed):

v(x) = aḊ+(aini −∆a/2)A sin(kq),

where initialization for the leapfrog scheme is assumed.
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• We can choose the first crossing epoch, say across = 10aini. The epoch of
the first crossing can then be identified as the epoch of the caustic formation
(i.e., ρ(xcross, across) =∞, where xcross = qcross = Lbox/2), which gives us the
wave amplitude A:

ρ(x, a) =
ρ̄

[1 +D+(a)×Ak cos(kq)]
, ⇒ A = − (D+(across)k)−1

.

• Positions x(q, a) and velocities v(q, a) is all we need to set up initial
conditions for particles.

• The subsequent 1D evolution using the PM code can be tested by comparing
x and v given by the above equations to the coordinates and velocities of
particles at different epochs using outputs of your code (for example, you
can plot phase diagrams, i.e. particles in v − x or v − q plane).
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• In addition, you can use solutions for the gravitational potential and particle
accelerations to test your gravity solver. For each grid cell:

φ(x, a) =
3
2

Ω0

a

{
q2 − x2

2
+D+ ×Ak [kq sin(kq) + cos(kq)− 1]

}
;

g(x, a) = −∂φ
∂x

=
3
2

Ω0

a
(x− q) =

3
2

Ω0

a
D+(a)A sin(kq)

The only difference from particles is that you do not know cell’s Lagrangian
coordinate q (q is known for particles if you maintain particles in the same
order throughout evolution; particle’s index gives q as we saw above). For
a given expansion factor a, q of a cell can be calculated by solving equation
q = x−D+(a)A sin(kq) numerically, with x is coordinate of the cell.
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Plane wave collapse test: phase diagram in Lagrangian coordinates q (a) the ART simulation with 323 base grid and 3

refinement levels and (b) the PM simulation with a 323-cell grid at the crossing time. Solid line, analytic solution; polygons,

numerical results.(c,d) Corresponding phase diagram for physical coordinates x.
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Plane wave collapse test: rms deviations of (a) coordinates and (b) velocities from analytic solution vs. the expansion

parameter for the PM code (solid line) and for the ART code with three levels of refinement (dashed line) See, Efstathiou et

al. (1985) for details on this and other tests.

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1985ApJS...57..241E&db_key=AST&high=3c5dd7953017012
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1985ApJS...57..241E&db_key=AST&high=3c5dd7953017012
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Beyond the Zeldovich test:
setting up cosmological initial conditions

If your code passes the Zeldovich test, you may try to run a realistic
cosmological simulation. To do this, you will have to code a routine to set up
initial conditions for the particles using a statistical realization of the power
spectrum, P (k), of your favorite cosmological model7. Fortunately, the basis
for the algorithm is the now familiar ZA.

The displacement of a particle is now determined not by a single wave, but by
the entire set of waves that can be represented numerically in the simulation
box. Thus, particle’s comoving coordinates and momenta, p = a2ẋ, are given
by

x = q−D+(a)S(q); p = −(a−∆a/2)2Ḋ+(a−∆a/2)S(q),

where a is the initial expansion factor and ∆a is its step8, q is particle’s
unperturbed position.

7An alternative is to set up initial conditions using a public code.
8Note that the growth factor D+(a) is usually scale-independent (e.g., for all models with CDM only) and this

is assumed here. This is not true, however, for some models, such as the Cold+Hot Dark Matter (CHDM).

http://astro.NMSU.Edu/~aklypin/pm.htm
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The displacement vector S is given by the discrete Fourier transform (e.g.,
Padmanabhan 1993, p.294):

S(q) = α

kmax∑
kx,y,z=−kmax

ik ck exp (ik · q) ;

kx,y,z =
2π
Ng

l,m, n; l,m, n = 0,±1, ...,±Np,1/2; k2 = k2
x + k2

y + k2
z 6= 0.

Here, α is the power spectrum normalization. The summation is over all
possible wavenumbers from the fundamental mode with wavelentgh equal to
the box size to the smallest “Nyquist” wavelength with the wavenumber of
Np,1/2. The real and imaginary components of the Fourier coefficients,
ck = (ak − ibk)/2 are independent gaussian random numbers with the mean
zero and dispersion σ2 = P (k)/k4:

ak =
√
P (k)

Gauss(0, 1)
k2

, bk =
√
P (k)

Gauss(0, 1)
k2

.

Note that ck should satisfy condition ck = c∗−k = (ak − ibk)/2.
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Thus, if we construct a realization of {kx,y,zck} using a cosmological power
spectrum on a grid in the Fourier space, its discrete FFT gives us components
of the real space displacement vector S(q) for all particles.
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Applying these equations in practice for Np particles on a cubic grid with N3
g

cells amounts to

1) distributing particles uniformly in the simulation volume (e.g., placing
particles in the centers of appropriately spaced grid cells).

2) Computing the displacement vector for each particle position. Construct a
realization of kx,y,zck on three (each for one component of the wavevector)
cubic grids. For example, for the x-component, the grid is initialized to kxck
where kx are running from −kNy to kNy (assume kNy = Np,1/2, k here is in
units of the fundamental mode 2π/Lbox = 2π/N1/3

g ) and ak and bk are
gaussian random numbers defined above.

3) FFT each of the three grids to get Sx(q), Sy(q), and Sz(q) in real space.
Apply ZA to displace particles from their Lagrangian positions (q→ x).
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You will need

• Your favorite FFT solver, if you don’t have one see Numerical Recipes (Ch.
12).

• A decent random number generator. Be careful here as you will need to
generate fairly long sequences of random numbers (I can supply you with
a RNG, if needed). The gaussian random pairs can be generated from
the uniformly distributed numbers using the Box-Muller method (Numerical
Recipes, Ch. 7).

• A routine returning P (k) for a specific cosmological model. See Hu
& Sugiyama 1996 and Eisenstein & Hu 1999 for useful analytical
approximations to P (k).

You can start with a simulation of Ω0 = 1 CDM universe. Evolution in this
model is simple: D+(a) = (a/a0). You can check D+ by computing the
two-point correlation function of DM particles at different epochs. If you get to
this point, you can then simulate open CDM and flat ΛCDM models to see
how the evolution of structures changes.

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1996ApJ...471..542H&db_key=AST&high=3c5dd7953002555
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1996ApJ...471..542H&db_key=AST&high=3c5dd7953002555
http://background.uchicago.edu/~whu/transfer/transferpage.html
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PM in cosmology: some historical references

• Efstathiou G. & Eastwood J. 1981, MNRAS 194, 503

• Klypin A.A. & Shandarin S.F. 1983, MNRAS 204, 891

• Centrella J. & Melott A.L. 1983, Nature 305, 196-198

• Miller R.H., 1983, ApJ 270, 390-409

• Efstathiou G., Davis M., White S.D.M., & Frenk C.S. 1985, ApJS 57, 241-260

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1981MNRAS.194..503E&db_key=AST&high=3c5dd7953017012
http://adsbit.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1983MNRAS.204..891K
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1983Natur.305..196C&db_key=AST&high=3c5dd7953019235
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1983ApJ...270..390M&db_key=AST&high=3c5dd7953024523
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1985ApJS...57..241E&db_key=AST&high=3c5dd7953017012
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Papers with useful info on PM

• Hockney, R. W., and Eastwood, J. W. 1981, “Computer Simulation Using
Particles”, McGraw-Hill, New York

• Klypin A.A. & Shandarin S.F. 1983, MNRAS 204, 891

• Efstathiou G., Davis M., White S.D.M., & Frenk C.S. 1985, ApJS 57, 241-260
[Review and comparison of cosmological N -body methods]

• Sellwood J.A. 1987, ARA&A 25, 151
[Review of particle simulation methods]

• Description of Hugh Couchman’s AP3M code

• Bertschinger E. 1998, ARA&A 36, 599
[The most recent review of numerical techniques used in cosmological
simulations and algorithms for setting up the initial conditions.]

http://ipac.lib.uchicago.edu/ipac/ipac?tm=bib&db=uofc&lb=uofc&cl=3&cs=50355771&sf=p&fd=1&dc=2&cd=2&sm=d&so=d&ft=c&bf=_au&df=a&sl=u&se=%5Fza592957a1&de=Hockney%2C+Roger+W%2E&uk=%5Fza592957a1&st=a&sn=30&ls=4&ts=2001jun&mc=use&bc=JRL&ut=ipacpub&sw=&sd=uofc&bd=uofc&pt=sum
http://ipac.lib.uchicago.edu/ipac/ipac?tm=bib&db=uofc&lb=uofc&cl=3&cs=50355771&sf=p&fd=1&dc=2&cd=2&sm=d&so=d&ft=c&bf=_au&df=a&sl=u&se=%5Fza592957a1&de=Hockney%2C+Roger+W%2E&uk=%5Fza592957a1&st=a&sn=30&ls=4&ts=2001jun&mc=use&bc=JRL&ut=ipacpub&sw=&sd=uofc&bd=uofc&pt=sum
http://adsbit.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1983MNRAS.204..891K
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1985ApJS...57..241E&db_key=AST&high=3c5dd7953017012
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1985ApJS...57..241E&db_key=AST&high=3c5dd7953017012
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1987ARA%26A..25..151S&db_key=AST&high=3c5dd7953019765
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1987ARA%26A..25..151S&db_key=AST&high=3c5dd7953019765
http://www-hpcc.astro.washington.edu/simulations/DARK_MATTER/adapintro.html
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ARA%26A..36..599B&db_key=AST&high=3c5dd7953019436
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ARA%26A..36..599B&db_key=AST&high=3c5dd7953019436
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1998ARA%26A..36..599B&db_key=AST&high=3c5dd7953019436
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• Michael Gross’s, PhD Thesis
[useful descriptions of PM and an algorithm for setting up ICs in Ch. 2 and
Appendix A]

• Klypin, A. & Holtzman, J. 1997, astro-ph/9712217
”Particle-Mesh code for cosmological simulations”

http://vizwww.cse.ucsc.edu/gross/
http://vizwww.cse.ucsc.edu/gross/
http://vizwww.cse.ucsc.edu/gross/
http://xxx.lanl.gov/abs/astro-ph/9712217
http://xxx.lanl.gov/abs/astro-ph/9712217
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Web links

• Amara’s Recap of Particle Simulation Methods: collection of info and links
on various N -body algorithms

• Anatoly Klypin’s public PM package for cosmological simulations.

• A set of PM lecture slides by M.A.K. Gross (UCSC). The page includes a
sample 1D PM code.

• Useful fortran and C (requires OpenGL) codes for visualization of particle
distributions in 3D.

http://www.amara.com/papers/nbody.html
http://www.amara.com/papers/nbody.html
http://astro.NMSU.Edu/~aklypin/pm.htm
http://vizwww.cse.ucsc.edu/gross/pm_lectures/
http://vizwww.cse.ucsc.edu/gross/pm_lectures/
http://astro.nmsu.edu/~akravtso/GROUP/p3d.html
http://physics.nyu.edu/~mb144/points.html

