Dark Energy & GEST: the Galactic Exoplanet Survey Telescope

- Cosmology with a Exoplanet Search Mission
- a MIDEX Proposal currently under review
 - $180M NASA OSS Cost cap
- Related option
 - STEP (Survey for Terrestrial ExoPlanets) is under consideration as Advanced Mission Concept

David Bennett
University of Notre Dame
NASA’s Exoplanet Goals

“The time is right to make the search for Earth-like planets around other stars a major priority for astronomy. This is a goal worthy of a civilization.” -- HST and Beyond (Dressler 1996)

- The cornerstone of NASA’s exoplanet search program is the Terrestrial Planet Finder (TPF)
- The McKee-Taylor Decadal Survey Report: support for TPF is “predicated on the assumption that space- and ground-based searches will confirm the expectation that terrestrial planets are common”
- **GEST** can do this
Exoplanet Search Mission Requirements

- Telescope aperture $\geq 1\text{m}$
- Continuous view of Galactic bulge for ≥ 6 months per year
 - other targets when bulge is near the Sun: Cosmology is free!
- Wide field of view: ~ 2 sq. deg.
- Near diffraction limited imaging: FWHM $\leq 0.3''$
 - Implies large pixel count: ~ 0.6 Gpix for $0.2''$ pixels
- Detectors sensitive in near-IR
 - Highly reddened Galactic bulge fields
- Data rate ≥ 14 Mbits/sec continuous (uncompressed)
A Wide FOV Space Telescope Finds Earths Strong planetary signals

Uniquely sensitive at a > 0.7AU

Taxpayers like exoplanets!
The **GEST** Midex Proposal

The GEST Team

D. Bennett (Notre Dame), I. Bond (Auckland), E. Cheng (GSFC), J. Connor (Alaska), K. Cook (LLNL), P. Garnavich (Notre Dame), K. Griest (UCSD), D. Jewitt (Hawaii), N. Kaiser (Hawaii), T. Lauer (NOAO), J. Lunine (Arizona), G. Luppino (Hawaii), D. Minniti (Catolica), S. Peale (UCSB), S. Rhie (Notre Dame), J. Rhodes (GSFC), J. Schneider (Paris Obs.), M. Shao (JPL), R. Stevenson (Notre Dame), C. Stubbs (UW), N. Woolf (Arizona), P. Yock (Auckland)

Industrial Partners

- Lockheed Martin Space Systems (LMSS)
 - LMSS-Sunnyvale: Spacecraft
 - MIT’s Lincoln Labs: Instrument
 - Telescope:
 - Arizona & Composite Optics
Galactic Exoplanet Survey Telescope

- 1m telescope
- 2.1 sq. deg. FOV
- shutter for camera
- 0.2”/pixel => 6×10^8 pixels
- continuous view of Galactic bulge
 - for 8 months per year
 - 60 degree Sun avoidance
- <0.025” pointing stability & drift
 - maintained >95% of the time
- observe in dither pattern on grid with 0.05” steps => accurate photometry
- MIDEX level budget (almost: donations are accepted)

Polar Orbit for GEST MIDEX proposal
Three Mirror Anastigmat
• 2.4×1.2 degree FOV
• allows filter wheel
 – 3-4 very wide filters
• non-circular field => more events!
• better baffling
GEST Instrument

- High sensitivity in near-IR: 50% better than EEV
- Diffraction limited optics at ~0.8 µm
- 32 Lincoln Labs 3k × 6k CCDs
 - 10 µm pixels; 600 Mpix total
- Passively cooled to -90°C
GEST Focal Plane Layout

Layout of 32 CCD FPA

shutter concept

Readout not simultaneous: minimizes readout electronics
Survey for Terrestrial ExoPlanets

 - Proposal for 1-year study phase
 - Cost cap $300M, but there is no budget separate budget for a mission
- 1.5m telescope aperture
- CCDs & HgCdTe detectors (passively cooled)
- Higher sensitivity gives statistics on Jupiters + Earths in the same system
- High Earth Orbit: inclined GEO or higher
- Lincoln Labs electronic shutter
- No moving parts except for filters
Lincoln Labs Integrated Electronic Shutter for Back-Illuminated CCD Imager

Objectives
- Transfer smear reduction
- High-speed photography
- Target tracking
- Range gating
- Real-time adaptive optics

Performance
- Short adjustable exposure time (< 100 ns)
- High extinction ratio (> 5000 for $\lambda < 580$ nm)

Electronic Shutter Pixel Cross Section

- $V_{SD} = 3 \text{ V}$
- $V_{IA} = 18 \text{ V}$
- $V_{SD} = 3 \text{ V}$

- $V_{SD} = 3 \text{ V}$
- $V_{IA} = 18 \text{ V}$
- $V_{SD} = 3 \text{ V}$

- $V_{SD} = 18 \text{ V}$
- $V_{IA} < 12 \text{ V}$
- $V_{SD} = 18 \text{ V}$

- $n+$ Buried Channel
- Contoured $p+$ Buried Layer
- High Resistivity $p-$ Substrate
- Shutter Open
- Shutter Closed
- Light Input
- CCD Gate
Lincoln Labs Electronic Shutter

INTEGRATED CCD ELECTRONIC SHUTTER

EXTINCTION RATIO

WAVELENGTH nm

- EXPERIMENT, 17 \(\mu \text{m} \) Si
- CALCULATED, 17 \(\mu \text{m} \) Si
- CALCULATED, 50 \(\mu \text{m} \) Si
- CALCULATED, 100 \(\mu \text{m} \) Si
GEST/STEP Cosmology Program

- High Redshift SN search
- Deep, wide weak lensing survey
- Comes for free
 - Use spare time when Galactic bulge is close to the Sun
 - But telescope parameters are optimised for planets
- A joint exoplanet/cosmology mission might be sensible
 - But it doesn’t fit easily into existing NASA programs
High-Z SN with GEST or STEP

- 1000’s of $0.6 < z < 1.7$ SN
- measure Ω_Λ to a few %
- photometric redshifts
- STEP: optical & IR photometry
- GEST Light curves
 - Only rest frame U-band
 - A small number of IR obs. From HST/WFC3 or NGST
- SN type classification from light curve shape
- Spectra for a subset of SN
Spectrographs for **GEST** SN Search

OSIRIS: OH-suppressing IR Imaging Spectrograph – under construction

Not quite dedicated to GEST follow-up, unfortunately.
Dark Energy Results from part-time SN Survey

- Results from 1 month of GEST data taken over 6 months
- Statistical errors can be made smaller by a factor of 3 if the SN search gets 10 months of observations
Weak Lensing with GEST

- 500-1000 sq. degrees surveyed
- 0.2 arcsec. pixels \Rightarrow \sim 0.15 arcsec. resolution with dithering
- measure galaxy shapes down to 0.3-0.5 arcsec. half light radius
- measure shapes to $I=26$
- $\sim 10^8$ galaxy shapes over course of mission
- 3-4 filters \Rightarrow photo z’s \Rightarrow subdivide into z bins

GEST will measure

- variance of the shear distribution $\Rightarrow \Omega_M \sigma_8$
- variance of the size distribution (magnification effect) $\Rightarrow \Omega_M$
- skewness of the shear distribution \Rightarrow independent measure of Ω_M
- relationship between galaxies and shear \Rightarrow bias parameter b
- redshift dependence of above parameters
Comparison to SNAP and HST/HUFI

- $80 \times$ imaging area of HST/HUFI
 - $20 \times$ better throughput for cosmology
 - Planet search not possible from HST orbit
 - $\sim 2 \times$ HST/HUFI cost
 - Allows HST exhibit in Air & Space Museum!
- About as good as SNAP for statistical error bars
 - But SNAP emphasizes systematics
 - STEP might get optical & IR light curves comparable to SNAP
 - Spectra from ground (for $z \sim 1$) and HST or NGST