Hubble Ultra-Wide-Field Imager (HUFI)

David Leckrone
Senior Project Scientist for HST

December 16, 2001
Hubble Space Telescope

Field of View

FOV Footprint at CCD FPA

4K x 4K CCD’s (3)

90 square arc minute FOV

X image (mm)

Y image (mm)
Hubble Space Telescope

Optical Schematic

M3 Mirror
Pupil
Filters, CCD
Shutter Location
CCD FPA
M2 Mirror
Radial “Pickle”
Pick Off Mirror (POM)

HST OTA
Geometric ray trace compared to two-pixel and four-pixel width scale-bars shows a well-corrected design.
Diffraction PSF encircled energy @ $\lambda=632.8$ nm for center field and 4 other field positions show that PSF is diffraction-limited and is uniform over full FOV.
Hubble Space Telescope

Instrument Layout

FGS Enclosure Side

Optical Bench

Strut

Point C
(Point B Opposite Side)

Radiator

CPL Saddle To AS Radiator
Hubble Space Telescope

Instrument Layout

M2

M2 Support

FGS Enclosure
Hubble Space Telescope

HUFI Design Features

• All-Reflective Design
 – Four surfaces – one flat, three powered

• Well-Corrected Aberrations
 – Wavefront error 0.0451 to 0.0523 waves rms at 632.8nm

• Flat Focal Surface
 – Requires three 4Kx4K CCD’s similar to ACS and WFC3 detectors

• Cooling Via HUFI External Radiator Plus Coupling To NCS Radiator

• Replaces FGS #3 Without Compromising Current Pointing Performance

• Does Not Interfere With Other Instruments
 – Amenable to parallel observing
 – Follow-up observations with WFC3, COS, ACS, STIS
HUFI Scientific Performance

- FOV – 90 arcmin2 (8xACS, 16xWFPC2)
- Pixel Scale – 0.10 arcsec (same as WFPC2)
- Sensitivity – Comparable to ACS in I-band, 5x WFPC2 in I-band
- Discovery Efficiency – 8xACS, 80xWFPC2
- SNe Ia Discovery Rate - ~1 per day with follow-up
POTENTIAL OBSERVING STRATEGY

• 3-6 Month campaigns dedicated to high galactic latitude fields

• Deep exposures with WFC3, COS, ACS broken into multiple visits
 – HUFI parallel exposures for “free”

• SN detected in HUFI fields followed with other HST instruments
 – STIS spectra for redshifts and classifications up to z=1.2
 – WFC3 near-IR images and grism spectroscopy up to 1.7 microns
 – ACS higher resolution images for host galaxy morphology
Monte Carlo Constraints, Input Model: \((\Omega_M=0.3, w_x=-2/3)\)
Monte Carlo Constraints, Input Model: \((\Omega_m=0.3, w_x=-2/3)\)
Hubble Space Telescope

RETIREMENT OPTIONS FOR HST

- One Shuttle flight allocated to HST after Servicing Mission 4 in 2004
- Current baseline plan is to return HST to the ground in 2010
 - Exhibit in National Air & Space Museum
 - Requires partial disassembly and disposal of multiple pieces in orbit
 (e.g. solar arrays, external radiators, possibly instruments)
 - 5 EVA mission
 - Requires HST to be stable and commandable
 - Less than 50/50 chance that HST will function to 2010

- Alternative option
 - "Light" servicing mission in 2007 instead of 2010
 - Maximizes probability of zero downtime between HST and NGST
 - Attach propulsion module to HST for end-of-mission controlled re-entry
 - Provides possible opportunity for new instrument, e.g. HUFI
Hubble Space Telescope

9/10/01 HST Reliability Indicator from the Refined Aerospace Corporation Model

Probability of HST Science Operations vs. Time Since Last Servicing Mission
SUMMARY

- We’ve identified an instrument design which provides a major increase in FOV compared to prior HST cameras
- A systematic campaign should yield ~1 SNe per day with follow up provided by full suite of HST instruments
- Flight opportunity requires change in current baseline retirement plan for HST and willingness of Code S to support a new HST instrument
Hubble Space Telescope

Thermal Block Diagram

HUFI Radial SI

90 watts electronics to modified “door radiator” using HPs

“New” Radiator/Door

120 watts to NCS Radiator using HP/VCHP to carry heat from CEB and CCDs

NCS Radiator

Existing Inserts

40 watts to AS
Total estimated power requirement of 250 W

- HUFI Radial SI
- 60 watts From HST
- Diode Box Auxiliary Power Ports
- 190 watts from NCS Radiator auxiliary power supply
- NCS Radiator